Errata for Admissible Digit Sets

J. Hughes, M. Niqui / Theoretical Computer Science 351 (2006) 61-73

This is a correct version of Lemma 4.2 (p. 69) that fills a gap. The new parts are in red.

Lemma 4.2 Let $A \in \mathbb{M}$ such that $\delta\left(A, \overline{\mathbb{R}^{+}}\right)<\operatorname{red}(\Phi)$. Then there exists $0 \leq$ $i<l$ such that $A \sqsubseteq \phi_{i}$.

Proof. By (3.2.b), we know that $A\left(\mathbb{R}^{+}\right) \subseteq \bigcup_{i=0}^{l-1} \phi_{i}\left(\mathbb{R}^{+}\right)$where $A\left(\mathbb{R}^{+}\right)$and each $\phi_{i}\left(\mathbb{R}^{+}\right)$are intervals. Hence, either there is an i such that $\phi_{i}(0) \in A\left(\mathbb{R}^{+}\right)$ or there is an i such that $A\left(\mathbb{R}^{+}\right) \subseteq \phi_{i}\left(\mathbb{R}^{+}\right)$. In the latter case, we have $A \sqsubseteq \phi_{i}$.

For the former case, suppose there is an $x \in A\left(\mathbb{R}^{+}\right)$such that $x=\phi_{i}(0)$ for some $\phi_{i} \in \Phi$. Since Φ is finite without loss of generality we can assume that x is the smallest number with this property, i.e.,

$$
\begin{equation*}
\forall i^{\prime}<k, \phi_{i^{\prime}}(0)<\phi_{i}(0) \Rightarrow \mathbf{S}_{0}\left(\phi_{i^{\prime}}(0)\right)<\mathbf{S}_{0}(A(0)) . \tag{4.1}
\end{equation*}
$$

By assumption, $\delta\left(A, \overline{\mathbb{R}^{+}}\right)<\operatorname{red}(\Phi)$ and so $\mathbf{S}_{0}(A(+\infty))-\mathbf{S}_{0}(A(0))<\operatorname{red}(\Phi)$, where $\mathbf{S}_{0}: \overline{\mathbb{R}^{+}} \longrightarrow[-1,1]$ is the bijection from Section 2. It follows that

$$
\begin{aligned}
\mathrm{S}_{0}(A(+\infty))-\mathbf{S}_{0}(x) & <\operatorname{red}(\Phi), \\
\mathbf{S}_{0}(x)-\mathbf{S}_{0}(A(0)) & <\operatorname{red}(\Phi),
\end{aligned}
$$

so $\mathbf{S}_{0}\left(A\left(\mathbb{R}^{+}\right)\right) \varsubsetneqq\left[\mathbf{S}_{0}(x)-\operatorname{red}(\Phi), \mathbf{S}_{0}(x)+\operatorname{red}(\Phi)\right]$. Since $x \in \mathbb{R}^{+}$, there is a $\phi_{j} \in \Phi$ with $x \in \phi_{j}\left(\mathbb{R}^{+}\right)$. Note that $\phi_{j}(0)<\phi_{i}(0)$ and hence by (4.1) $\mathrm{S}_{0}\left(\phi_{j}(0)\right)<\mathrm{S}_{0}(A(0))$. Moreover, minimality of $\operatorname{red}(\Phi)$ in (4.4) means that the end points $\mathbf{S}_{0}\left(\phi_{j}(0)\right)$ and $\mathbf{S}_{0}\left(\phi_{j}(+\infty)\right)$ are at least at a distance $\operatorname{red}(\Phi)$ from $\mathbf{S}_{0}(x)$. In other words,

$$
\left[\mathbf{S}_{0}(x)-\operatorname{red}(\Phi), \mathbf{S}_{0}(x)+\operatorname{red}(\Phi)\right] \subseteq\left[\mathbf{S}_{0}\left(\phi_{j}(0)\right), \mathbf{S}_{0}\left(\phi_{j}(+\infty)\right)\right]
$$

and so $A \sqsubseteq \phi_{j}$.

This is a correct version of Theorem 4.3 (pp. 69-70). The new parts are in red.

Theorem 4.3 Let $A \in \mathbb{M}$ and $\alpha \in \Phi^{\omega}$ be given and let $\beta=\bigsqcup e m^{A, \alpha}(t)$. Then $\beta \in \Phi^{\omega}$.

Proof. We prove by induction that, for every j, there exists an n such that length $\left(\operatorname{em}^{A, \alpha}(n)\right) \geq j$. The base case $(j=0)$ is trivial. For the inductive step, we will suppose that the claim is true for some j and prove it for $j+1$.

Let n be given, then, such that length $\left(\operatorname{em}^{A, \alpha}(n)\right) \geq j$ and let B be the matrix of coefficients for $\mathrm{M}^{A, \alpha}(n)$. Let

$$
B=\left[\begin{array}{l}
b_{11} 1 \\
b_{21} \\
b_{22}
\end{array}\right], \quad M=\left[\begin{array}{cc}
1 & 1 \\
b_{21}+b_{21} & b_{12}+b_{22}
\end{array}\right] .
$$

By induction, B is refining, so $b_{11}+b_{21} \neq 0$ and $b_{12}+b_{22} \neq 0$ (see comments following Equation (4.2)).

Let

$$
\begin{equation*}
X:=\frac{1}{\max (|M(0)|,|M(+\infty)|)} \tag{4.2}
\end{equation*}
$$

Since $\lim _{j \rightarrow \infty} \mathcal{B}(\Phi, j)=0$, there exists N such that

$$
\begin{equation*}
\mathcal{B}(\Phi, N)<\frac{\operatorname{red}(\Phi) X^{2}}{|\operatorname{det} B|} \tag{4.3}
\end{equation*}
$$

Take $J=n+N+1$. We claim that length $\left(\operatorname{em}^{A, \alpha}(J)\right) \geq j+1$. Let $\alpha=$ $\phi_{i_{0}} \phi_{i_{1}} \phi_{i_{2}} \ldots$ and let

$$
C=\phi_{i_{\mathrm{ab}} A, \alpha(n)} \circ \phi_{i_{\mathrm{ab}} A, \alpha_{(n)+1}} \circ \ldots \circ \phi_{i_{\mathrm{ab}} \mathrm{~A}^{A, \alpha(n)+N-1}} .
$$

The Möbius map C, then, is constructed by taking the composition of the next N digits of the input stream α.

We may assume that every step from n to $n+N$ (inclusive) is an absorption step, so that

$$
h^{A, \alpha}(J-1)=\left\langle B \circ C, \mathrm{em}^{A, \alpha}(n), \mathrm{ab}^{A, \alpha}(n)+N\right\rangle .
$$

Now, by our choice of N, we have

$$
\delta\left(C, \mathbb{R}^{+}\right)<\frac{\operatorname{red}(\Phi) X^{2}}{|\operatorname{det} B|}
$$

We calculate

$$
\begin{align*}
\delta\left(B \circ C, \mathbb{R}^{+}\right) & =\delta\left(B, C\left(\mathbb{R}^{+}\right)\right) & & \\
& =\delta\left(C, \mathbb{R}^{+}\right) \cdot|\operatorname{det} B| \cdot M(C(0)) \cdot M(C(+\infty)) & & \text { by }(2.2) \\
& \leq \delta\left(C, \mathbb{R}^{+}\right) \cdot \frac{|\operatorname{det} B|}{X^{2}} & & \text { by }(4.2) \tag{4.2}\\
& <\operatorname{red}(\Phi) . & &
\end{align*}
$$

Hence we can apply Lemma 4.2 and obtain ϕ_{i} such that $B \circ C \sqsubseteq \phi_{i}$. Thus, we see that the Jth step is an emission step, as desired.

