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1. The problem

1.1 Formal semantics for technical functions
This research forms part of the NWO Norms in Knowledge
project. One of the main aims of this project is the formal-
ization of artifactual functions.
Artifacts are typically intended for certain uses. A toaster
makes toast and a lighter creates small fires. These are the
primary functions of toasters and lighters, respectively.
We aim to provide a conceptual analysis of such functions
via formal semantics. That is, we wish to construct a logical
language in which functional ascriptions to artifacts can be
expressed and a corresponding semantics which assigns
meanings to such statements. We present today the initial
steps to this goal.

1.2 Formal semantics for means-end ascrip-
tions
Functional ascriptions entail related means-end ascriptions.
When we say that the function of the toaster is to make
toast, we are committed to the claim, “The toaster is a
means to producing toast.” More precisely, we are com-
mitted to the claim, “There is some way of using the toaster
that will produce toast.”
We believe that means-end ascriptions are very closely
related to functional ascriptions. Indeed, an analysis of
means-end ascriptions is an essential first step to our con-
ceptual analysis of functions. We report today on some of
the progress on this initial step. We investigate a language
in which

• ends are formulas, i.e. descriptions of the world;

• means are transitions between possible worlds, i.e. ac-
tions.

2. The approach

2.1 Dynamic logic
An end is a description. A means is some way to change
the world so that the end is realized. This strongly suggests
that we take dynamic logic as our basic language.
Propositional dynamic logic (PDL) [4] is built from a set of
atomic propositions and a set of actions. For each action a,
we introduce modal operators [a] and 〈a〉.

We interpret . . . as asserting that. . .
[a]ϕ doing a will result in ϕ;
〈a〉ϕ doing a may result in realizing ϕ.

The standard semantics for dynamic logic consists of a set
of possible worlds together with a non-deterministic labeled
transition system. The transition system gives the set of
possible outcomes of doing a in a given world.
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Figure 1: A PDL model for a race started by firing a one-
shot pistol, with the possibility of misfires.

In Figure 1 we model a situation in which one has a (one-
shot) starter pistol used for starting a race. The pistol may
be loaded or unloaded and the race may have started or
not. The yellow arrows show the effect of firing the pistol
and the blue arrows the effect of loading the pistol. To make
it more interesting, we include the possibility that a loaded
gun misfires (this does not change the world at all).

Definition: In a world w, an action a is a (local)
means to ϕ iff
1. one can do a in w and

2. doing a in w ensures that ϕ will be realized.

The first condition is represented by the formula 〈a〉>
(where > is the always true predicate) and the second by
[a]ϕ.

a is a means to ϕ in w ⇔ w |= 〈a〉> ∧ [a]ϕ.

Table 1 applies this definition to Figure 1.

Action is a means to. . . in world(s). . .

fire Started

fire ¬Started

load Loaded

load; fire Started

Table 1: Some means-end ascriptions for Figure 1.

2.2 Logic of ability – a comparison
Mark Brown constructs a “logic of ability” in [1]. He repre-
sents the “can” of ability by a modal operator ♦�.

♦�ϕ means one can reliably bring about ϕ.

Brown’s semantics are a possible world semantics involving
minimal models (i.e. neighborhood semantics).
One expects a close connection between can assertions
and means-end assertions, something like the following:

One can bring about ϕ
m

There is a means to ϕ

In fact, if nothing like this relation holds, then we would be
concerned about the appropriateness of our means-end se-
mantics.
Fortunately, we do get the desired correspondence. There
is a natural translation of our means-end language to ability,
so that the can-operator essentially captures the existence
of means, as one expects. This fact provides some confir-
mation of the sensibility of our approach.
Brown’s logic offers more than just peace of mind, however.
He uses minimal models to avoid some undesirable fea-
tures of Kripke models. In particular, if one uses Kripke
models and the strong modal operator to model ability, then
one is committed to the equivalence

Property of Kripke frames

♦�ϕ ∧ ♦�ψ ⇔ ♦�(ϕ ∧ ψ) one can ϕ
and

one can ψ

 ⇔ one can
(
ϕ and ψ

)

(The weak operator has a dual property that is equally un-
desirable.) This equivalence conflicts with basic facts about
ability. Often, we are able to bring about either of two mutu-
ally exclusive conditions: one can close the door

and
one can leave it open

 but not both at once!

The same considerations apply to means-end ascriptions.
It makes sense to use minimal models for our means-end
semantics instead of standard Kripke models. Nonetheless,
we present the simpler Kripke models today.

3. Refinements

3.1 Global/conditional ascriptions
We have defined the term “means in a world”, but this is a
very narrow kind of means-end ascription. Very often, one
is interested in broader assertions, such as normally (but
not always), a is a means to ϕ. We summarize three differ-
ent types of means-end ascriptions in Table 2.

Type Meaning Formula
local in this world, a can yield ϕ [a]ϕ

conditional given ψ, a normally yields ϕ ψ ⇒ [a]ϕ

global a normally yields ϕ > ⇒ [a]ϕ

Table 2: Types of means-end ascriptions (with 〈a〉> sup-
pressed).

For example, one would like to say that firing the gun is a
means to starting the race, provided that the gun is loaded.
An essential feature of practical reasoning of this sort is
non-monotonicity, better known as the frame problem [2]. If
the gun is loaded, then firing it will start the race, but not if
all of the racers happen to be hearing-impaired!

Loaded ⇒ [fire]Started,

but
RunnersDeaf ∧ Loaded 6⇒ [fire]Started.

We accommodate the frame problem by interpreting “⇒” as
a non-monotonic conditional operator.

3.2 Efficacy and fuzzy sets
A central feature of means (and technical functions) is effi-
cacy: the propensity to attain one’s end. Traditional seman-
tics fail to represent efficacy. For this, one wants probabilis-
tic features while retaining truth-functionality. We do this by
using fuzzy set semantics [3, 5].
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Figure 2: In classical set theory (a), an element is either in
a set or not; x ∈ S is either true or false. In fuzzy set theory
(b), the formula x ∈ S is true to some degree.

We add probabilities to our transition systems. In our exam-
ple, a misfire is less likely than otherwise and our transition
structure should reflect that. Our semantics reflect uncer-
tainty via fuzzy logic. This extends traditional fuzzy logic by
adding dynamic operators and novel semantics for same.
In the end, the set of worlds satisfying a given PDL formula
is a fuzzy set, as shown in Figure 3.
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Figure 3: Fuzzy semantics for PDL: In (a), we assign prob-
abilities to some of the transitions, resulting in the fuzzy set
of worlds satisfying [fire]Started illustrated in (b).

4. Future work

4.1 A return to functions
Once we are satisfied with our basic means-end seman-
tics, we will return to artifactual functions. This will involve
parameterizing the dynamic operators with tokens and/or
types, shown below.

Parameter Operators
tokens 〈fire(this gun)〉, [fire(that gun)]

types 〈fire(starter gun)〉, [fire(flare gun)]

Of course, there are still many open questions regarding
functions:

• How to distinguish proper from accidental function?

• How to characterize malfunction?

• Can one represent other evaluative features besides effi-
cacy?

• And so on. . .
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